Infrared Optical Response of Metallic Graphene Nanoribbons
نویسندگان
چکیده
منابع مشابه
Ultra-narrow metallic armchair graphene nanoribbons
Graphene nanoribbons (GNRs)-narrow stripes of graphene-have emerged as promising building blocks for nanoelectronic devices. Recent advances in bottom-up synthesis have allowed production of atomically well-defined armchair GNRs with different widths and doping. While all experimentally studied GNRs have exhibited wide bandgaps, theory predicts that every third armchair GNR (widths of N=3m+2, w...
متن کاملEngineering the Thermoelectric Power Factor of Metallic Graphene Nanoribbons
In this work we engineer the thermoelectric (TE) properties of metallic zigzag graphene nanoribbons by the introduction of extended line defects and positively charged substrate impurities. We show that, in such a way, an asymmetry in the transmission of electrons and holes can be created, which allows separation of hot and cold carriers and will provide a very high TE power factor.
متن کاملExcitonic effects in the optical spectra of graphene nanoribbons.
We present a first-principles calculation of the optical properties of armchair-edged graphene nanoribbons (AGNRs) with many-electron effects included. The reduced dimensionality of the AGNRs gives rise to an enhanced electron-hole binding energy for both bright and dark exciton states (0.8-1.4 eV for GNRs with width approximately 1.2 nm) and dramatically changes the optical spectra owing to a ...
متن کاملOptical field terahertz amplitude modulation by graphene nanoribbons.
In this study, first-principles time-dependent density functional theory calculations were used to demonstrate the possibility to modulate the amplitude of the optical electric field (E-field) near a semiconducting graphene nanoribbon. A significant enhancement of the optical E-field was observed 3.34 Å above the graphene nanoribbon sheet, with an amplitude modulation of approximately 100 fs, w...
متن کاملInterfaces Within Graphene Nanoribbons
We study the conductance through two types of graphene nanostructures: nanoribbon junctions in which the width changes from wide to narrow, and curved nanoribbons. In the wide-narrow structures, substantial reflection occurs from the wide-narrow interface, in contrast to the behavior of the much studied electron gas waveguides. In the curved nanoribbons, the conductance is very sensitive to det...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Condensed Matter Physics
سال: 2010
ISSN: 1687-8108,1687-8124
DOI: 10.1155/2010/258019